Higher-Order Ghost State

Ralf Jung, Robbert Krebbers, Lars Birkedal, Derek Dreyer ICFP 2016 in Nara, Japan

Max Planck Institute for Software Systems (MPI-SWS), Aarhus University

• This talk is about Iris, a logic we want to apply to verify the safety of Rust.

- This talk is about Iris, a logic we want to apply to verify the safety of Rust.
- The key technical contribution is to show how to extend Iris with higher-order ghost state.

- This talk is about Iris, a logic we want to apply to verify the safety of Rust.
- The key technical contribution is to show how to extend Iris with higher-order ghost state.

Java Go Haskell

. . .

Focus on safety

Java Go Haskell

Focus on safety

Focus on control

- Higher-order functions
- Polymorphism / Generics
- Traits (typeclasses + associated types)

- Higher-order functions
- Polymorphism / Generics
- Traits (typeclasses + associated types)

B

• Control over memory allocation and data layout

- Higher-order functions
- Polymorphism / Generics
- Traits (typeclasses + associated types)

- Control over memory allocation and data layout
- Linear (ownership-based) type system with regions & region inference

- Higher-order functions
- Polymorphism / Generics
- Traits (typeclasses + associated types)
- Concurrency
- Control over memory allocation and data layout
- Linear (ownership-based) type system with regions & region inference

Wanted:

program logic

Wanted:

separation logic

Wanted:

concurrent separation logic

Wanted:

Higher-order concurrent separation logic

Wanted:

Higher-order concurrent separation logic

Concurrency Logics

Picture by Ilya Sergey

Concurrency Logics

Picture by Ilya Sergey

Complex Foundations

Complex Foundations

Iris (POPL 2015) is built on two simple mechanisms:

- Invariants
- User-defined ghost state

Iris (POPL 2015) is built on two simple mechanisms:

- Invariants
- User-defined ghost state

Ghost state

Auxiliary program variables

("ghost heap")

Tokens / Capabilities

Monotone state

(e.g., trace information)

Monotone state

(e.g., trace information)

Ghost State

Ghost State

(e.g., trace information)

Ghost state	PCM composition
Auxiliary program variables	Disjoint union
("ghost heap")	
Tokens / Capabilities	No composition
Monotone state	Maximum
(e.g., trace information)	

Iris: Resting on Simple Foundations

Ghost state (any partial commutative monoid)

Iris: Resting on Simple Foundations

Invariants:

$$\frac{\{ \triangleright l * P\} e \{ \triangleright l * Q\}_{\mathcal{E}} \text{ atomic(e)}}{\left[\int_{\iota}^{\iota} \vdash \{ P\} e \{ v. Q \}_{\mathcal{E} \uplus \{ \iota \}} \right]}$$

Ghost state (any partial commutative monoid):

$$\frac{\forall a_{\mathrm{f}}. a \# a_{\mathrm{f}} \Rightarrow b \# a_{\mathrm{f}}}{[a] \Rightarrow [b]} \qquad \frac{a \cdot b = c}{[a] * [b] \Leftrightarrow [c]}$$

 $[a] \Rightarrow \mathcal{V}(a)$

Complex Foundations

Iris: Resting on Simple Foundations

Invariants:

 $\{ \triangleright I * P \} e \{ \triangleright I * Q \}_{\mathcal{E}}$ atomic(e)

For specifying some synchronization primitives, these foundations are not enough!

 $\forall a_{\rm f}. a \# a_{\rm f} \Rightarrow b \# a_{\rm f}$ $\mathbf{a} \cdot \mathbf{b} = \mathbf{c}$ $a * b \Leftrightarrow c$ $|a| \Rightarrow \mathcal{V}(a)$

User-defined ghost state: PCM M

Higher-Order Ghost State

Higher-Order Ghost State

Iris 1.0 could not handle higher-order ghost state.

- Motivate why higher-order ghost state is useful.
- Demonstrate how to extend Iris to support higher-order ghost state.

- Motivate why higher-order ghost state is useful.
- Demonstrate how to extend Iris to support higher-order ghost state.

- Motivate why higher-order ghost state is useful.
- Demonstrate how to extend Iris to support higher-order ghost state.

- Motivate why higher-order ghost state is useful.
- Demonstrate how to extend Iris to support higher-order ghost state.

Barrier

```
let b = newbarrier() in
   [computation];
   signal(b)
                      wait(b);
                      [use result
                      of computation]
```

wait(b);

[use result of computation]

15

Barrier

$\texttt{let} \ b = \texttt{newbarrier}() \ \texttt{in}$			
	[computation];		
	signal(b)		
wait(b);		wait(b);	
[use result		[use result	
of computation]		of computation]	

{True} let b = newbarrier() $\{send(b, P) * recv(b, P)\}$ $\{send(b, P) * P\} signal(b) \{True\}$ $\{\operatorname{recv}(b, P)\}$ wait(b) $\{P\}$

Capability to send P.

Barrier

$\texttt{let} \ b = \texttt{newbarrier}() \ \texttt{in}$			
	[computation];		
	signal(b)		
<pre>wait(b);</pre>		wait(b);	
[use result		[use result	
of computation]		of computation]	

Barrier


```
Barr
                  {True}
                     let b = \text{newbarrier}()
                  \{send(b, P) * recv(b, P)\}
            \{send(b, P) * P\} signal(b) \{True\}
wait
                  \{\operatorname{recv}(b, P)\} wait(b) \{P\}
// H
[use
        recv(b, P * Q) \Rightarrow recv(b, P) * recv(b, Q)
 of c
```

Barrier: A little history

• Spec first proposed by Mike Dodds *et al.* (2011)

{True} let b = newbarrier() $\{send(b, P) * recv(b, P)\}$ $\{send(b, P) * P\} signal(b) \{True\}$ $\{\operatorname{recv}(b, P)\}$ wait(b) $\{P\}$ $recv(b, P * Q) \Rightarrow$ recv(b, P) * recv(b, Q)

Barrier: A little history

- Spec first proposed by Mike Dodds *et al.* (2011)
- First proof later found to be flawed
- Fixed using named propositions

{True} let b = newbarrier() $\{send(b, P) * recv(b, P)\}$ $\{send(b, P) * P\} signal(b) \{True\}$ $\{\operatorname{recv}(b, P)\}$ wait(b) $\{P\}$ $recv(b, P * Q) \Rightarrow$ recv(b, P) * recv(b, Q)

Gives a fresh name γ to *P*.

Gives a fresh name γ to *P*. *P* does not have to hold!

 $\forall P. \text{ True} \Rightarrow \exists \gamma. \gamma \mapsto P$

Gives a fresh name γ to *P*. P does not have to hold! $\forall P. \text{ True} \Rightarrow \exists \gamma. \gamma \mapsto P$ $\forall \gamma, \mathsf{P}, \mathsf{Q}. \ (\gamma \mapsto \mathsf{P} * \gamma \mapsto \mathsf{Q}) \Rightarrow (\mathsf{P} \Leftrightarrow \mathsf{Q})$ Agreement about proposition named γ .

Gives a fresh name \sim to P

Derive named propositions from lower-level principles:

Build named propositions on ghost state.

Agreement about proposition named γ .

Gives a fresh name γ to *P*. Allocates new slot in "table". $\forall P. \text{ True} \Rightarrow \exists \gamma. \gamma \mapsto P$ $\forall \gamma, \mathsf{P}, \mathsf{Q}. \ (\gamma \mapsto \mathsf{P} * \gamma \mapsto \mathsf{Q}) \Rightarrow (\mathsf{P} \Leftrightarrow \mathsf{Q})$ Agreement about row γ of the "table".

Higher-Order Ghost State

- Motivate why higher-order ghost state is useful.
- Demonstrate how to extend Iris to support higher-order ghost state.

We got a problem with our ghost state.

Who we gonna call?

Step-Indexing

Step-Indexing

- Introduced 2001 by Appel and McAllester
- Used to solve circularities in models of higher-order state

 Equip PCMs with a "step-indexing structure".

 Equip PCMs with a "step-indexing structure". → CMRA

A CMRA is a tuple $(M : COFE, (V_n \subseteq M)_{n \in \mathbb{N}})$ $|-|: M \xrightarrow{\text{ne}} M^?, (\cdot): M \times M \xrightarrow{\text{ne}} M$ satisfying: $\forall n, a, b, a \stackrel{n}{=} b \land a \in \mathcal{V}_n \Rightarrow b \in \mathcal{V}_n$ (CMRA-VALID-NE) $\forall n, m, n \ge m \Rightarrow \mathcal{V}_n \subseteq \mathcal{V}_m$ (CMRA-VALID-MONO) $\forall a, b, c, (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (CMRA-ASSOC) $\forall a, b, a \cdot b = b \cdot a$ (CMRA-COMM) $\forall a, |a| \in M \Rightarrow |a| \cdot a = a$ (CMRA-CORE-ID) $\forall a. |a| \in M \Rightarrow ||a|| = |a|$ (CMRA-CORE-IDEM) $\forall a, b, |a| \in M \land a \preccurlyeq b \Rightarrow |b| \in M \land |a| \preccurlyeq |b|$ (CMRA-CORE-MONO) $\forall n, a, b. (a \cdot b) \in \mathcal{V}_n \Rightarrow a \in \mathcal{V}_n$ (CMRA-VALID-OP) $\forall n, a, b_1, b_2, a \in \mathcal{V}_n \land a \stackrel{n}{=} b_1 \cdot b_2 \Rightarrow$ $\exists c_1, c_2, a = c_1 \cdot c_2 \wedge c_1 \stackrel{n}{=} b_1 \wedge c_2 \stackrel{n}{=} b_2$ (CMRA-EXTEND) where $a \preccurlyeq b \triangleq \exists c, b = a \cdot c$ (CMRA-INCL)

- Equip PCMs with a "step-indexing structure". → CMRA
- Let user define a functor yielding a CMRA.

A CMRA is a tuple $(M : COFE, (V_n \subseteq M)_{n \in \mathbb{N}})$ $|-|: M \xrightarrow{\text{ne}} M^?, (\cdot): M \times M \xrightarrow{\text{ne}} M$ satisfying: $\forall n, a, b, a \stackrel{n}{=} b \land a \in \mathcal{V}_n \Rightarrow b \in \mathcal{V}_n$ (CMRA-VALID-NE) $\forall n, m. n \ge m \Rightarrow \mathcal{V}_n \subseteq \mathcal{V}_m$ (CMRA-VALID-MONO) $\forall a, b, c, (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (CMRA-ASSOC) $\forall a, b, a \cdot b = b \cdot a$ (CMRA-COMM) $\forall a, |a| \in M \Rightarrow |a| \cdot a = a$ (CMRA-CORE-ID) $\forall a. |a| \in M \Rightarrow ||a|| = |a|$ (CMRA-CORE-IDEM) $\forall a, b, |a| \in M \land a \preccurlyeq b \Rightarrow |b| \in M \land |a| \preccurlyeq |b|$ (CMRA-CORE-MONO) $\forall n, a, b. (a \cdot b) \in \mathcal{V}_n \Rightarrow a \in \mathcal{V}_n$ (CMRA-VALID-OP) $\forall n, a, b_1, b_2, a \in \mathcal{V}_n \land a \stackrel{n}{=} b_1 \cdot b_2 \Rightarrow$ $\exists c_1, c_2, a = c_1 \cdot c_2 \wedge c_1 \stackrel{n}{=} b_1 \wedge c_2 \stackrel{n}{=} b_2$ (CMRA-EXTEND) where $a \preccurlyeq b \triangleq \exists c, b = a \cdot c$ (CMRA-INCL)

- Equip PCMs with a "step-indexing structure". → CMRA
- Let user define a functor yielding a CMRA.
- Tie the knot by taking a fixed-point.

A CMRA is a tuple $(M : COFE, (V_n \subseteq M)_{n \in \mathbb{N}})$ $|-|: M \xrightarrow{\text{ne}} M^?, (\cdot): M \times M \xrightarrow{\text{ne}} M$ satisfying: $\forall n, a, b, a \stackrel{n}{=} b \land a \in \mathcal{V}_n \Rightarrow b \in \mathcal{V}_n$ (CMRA-VALID-NE) $\forall n, m. n \ge m \Rightarrow \mathcal{V}_n \subseteq \mathcal{V}_m$ (CMRA-VALID-MONO) $\forall a, b, c. (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (CMRA-ASSOC) $\forall a, b, a \cdot b = b \cdot a$ (CMRA-COMM) $\forall a, |a| \in M \Rightarrow |a| \cdot a = a$ (CMRA-CORE-ID) $\forall a. |a| \in M \Rightarrow ||a|| = |a|$ (CMRA-CORE-IDEM) $\forall a, b, |a| \in M \land a \preccurlyeq b \Rightarrow |b| \in M \land |a| \preccurlyeq |b|$ (CMRA-CORE-MONO) $\forall n, a, b. (a \cdot b) \in \mathcal{V}_n \Rightarrow a \in \mathcal{V}_n$ (CMRA-VALID-OP) $\forall n, a, b_1, b_2, a \in \mathcal{V}_n \land a \stackrel{n}{=} b_1 \cdot b_2 \Rightarrow$ $\exists c_1, c_2, a = c_1 \cdot c_2 \wedge c_1 \stackrel{n}{=} b_1 \wedge c_2 \stackrel{n}{=} b_2$ (CMRA-EXTEND) where $a \preccurlyeq b \triangleq \exists c, b = a \cdot c$ (CMRA-INCL)

- Equip PCMs with a "step-indexing structure". → CMRA
- Let user define a functor yielding a CMRA.
- Tie the knot by taking a fixed-point.

 $\forall P. \text{ True} \Rightarrow \exists \gamma. \gamma \mapsto P$ $\forall \gamma, P, Q. (\gamma \mapsto P * \gamma \mapsto Q) \Rightarrow \triangleright (P \Leftrightarrow Q)$ Agreement about proposition named γ only holds at the next step-index.

Iris: Resting on Simple Foundations

Invariants:

$$\frac{\{ \triangleright l * P\} e \{ \triangleright l * Q\}_{\mathcal{E}} \text{ atomic(e)}}{\left[\int_{\iota}^{\iota} \vdash \{ P\} e \{ v. Q \}_{\mathcal{E} \uplus \{ \iota \}} \right]}$$

Ghost state (any CMRA):

$$\frac{\forall a_{\rm f}, n. a \#_n a_{\rm f} \Rightarrow b \#_n a_{\rm f}}{[a] \Rightarrow [b]} \qquad \frac{a \cdot b = c}{[a] * [b] \Leftrightarrow [c]}$$

$$[a] \Rightarrow \mathcal{V}(a)$$

Iris: Resting on Simple Foundations

• Other examples of higher-order ghost state

- Other examples of higher-order ghost state
- How to simplify the model with CMRAs

- Other examples of higher-order ghost state
- How to simplify the model with CMRAs
- Coq formalization

- Other examples of higher-order ghost state
- How to simplify the model with CMRAs
- Coq formalization

- Ongoing work:
 - *Encode* invariants using higher-order ghost state
 - Applying named propositions in the safety proof of Rust

- Other examples of higher-order ghost state
- How to simplify the model with CMRAs
- Coq formalization

- Ongoing work:
 - *Encode* invariants using higher-order ghost state
 - Applying named propositions in the safety proof of Rust

Thank you for your attention!